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The reduced graph model, when used in conjunction with the search trees 
method, provides a novel combinatorial procedure for the enumeration and 
generation of Kekuld structures. The procedure is suited for large benzenoid 
hydrocarbons consisting of cata- and thin peri-condensed parts. 
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Zur Anwendung des ,,Reduced Graph Model" im Zusammenhang mit ~ ,~Search 
Trees" zur Ermittlung der Anzahl m6glicher Kekul~-Strukturen 

Das Model1 erlaubt mit der im Titel genannten Kombination eine neuartige 
Methode zur Ermittlung und Generierung von KekulO~Strukturen. Das Verfahren 
ist ffir groBe benzoide Kohlenwasserstoffe geeignet, die aus cata- und (dfinnen) 
peri-kondensierten Teilstrukturen bestehen. 

Introduction 

Recently we have proposed a "pencil-and-paper" method for the 
enumeration of  Kekuld structures in benzenoid hydrocarbons, BH's 1. This 
method is based on the reduced graph model which was introduced as an 
alternative way to depict hexagonal networks 2,3. The problem of 
enumeration (production of  the total number) and generating (con- 
struction of all possibilities) Kekuld structures is continually being 
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discussed in the literature 1-19. In addition, the recent interest in Kekuld 
structures is related to their important role in structure-resonance 
theory 1°'19'2° and in the conjugated circuits model 19'21, respectively. 
Finally, Kekuld structures play one of  the key role in understanding the 
mathematical basis for the intimate relationship between resonance 
theory and the Hiickel MO model 22-24. 

In the present paper we wish to discuss the use of  search trees 25 within 
the reduced graph model, which can be used to generate Kekuld structures 
of BH's and those alternant and non-alternant hydrocarbons which can be 
reduced or enlarged to BH's by convenient graph-theoretical 
transformations 18,26. More specifically, we will be interested in enumerat- 
ing Kekuld structures of large BH's consisting of cata- and peri-condensed 
subunits. We will consider only thin peri-condensed subunits. Thin peri- 
condensed benzenoid hydrocarbon (perifusene) does not contain the 
coronene skeleton 23'24. 

Results and Discussion 

The reduced graph model and its application to the enumeration 
problems of BH's have been described elsewhere 1-3. However, we will 
review its most salient features in order to clarify the present work. 

Every planar BH may be represented as part of an infinite hexagonal planar 
lattice. Three sets of parallel edges: vertical, left, and right, arranged in rows, are 
present in the hexagonal lattice. A new infinite trigonal planar lattice may be 
constructed from the hexagonal lattice. This can be done with the aid of the 
following information. The vertices of the trigonal lattice correspond to the 
vertical edges of the hexagonal lattice. Two vertices in the trigonal lattice are 
connected if (a) the corresponding edges belong to the same ring in the hexagonal 
lattice, or if (b) the corresponding edges are in adjacent rings of the hexagonal 
lattice, and their distance is unity. The trigonal lattice has two disjunctive sets of 
edges called "diagonal" and "horizontal" edges. The degree of vertices in the 
trigonal lattice is 6: two "horizontal" and four "diagonal" edges joining each 
vertex. Analogous to the transformation from the hexagonal lattice to the trigonal 
lattice, a given BH may also bc transmuted from hexagonal, G, to trigonal, M (G), 
representation. The trigonal representation of BH, M(G), is called the reduced 
graph of G. The pyrenc graph and the corresponding reduced graph are given in 
Scheme 1 as an illustration of this procedure. 

Scheme 1 

G I,,I(G) 
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The reduced graph M(G) can be colored in a specific way: black vertices 
correspond to single bonds and white vertices to double bonds in the correspond- 
ing structure G. For every bond assignment in G, one coloring of the vertices in 
M(G) is possible. Every coloring of M(G) is a unique and unambiguous 
representation of a particular Kekulk structure, and hence the number of colorings 
in M(G) corresponds to the number of Kekuld structures that can be assigned to a 
given BH. The enumeration and display of all possible Kekulk structures may be 
performed by applying a procedure which searches for all reduced graphs which 
are colored differently 3. 

If the set of diagonal edges is empty, the reduced graph takes the form of a 
chain, otherwise it takes the form of a lattice. Reduced graphs in the form of a 
lattice may be separated into two groups: reduced graphs in the form of a "whole 
lattice" and reduced graphs in the form of a fused "whole lattice ''1-3. A reduced 
graph in the form of a fused whole lattice can be decomposed into several whole 
lattices or into whole lattices and chains, respectively. 

A fused whole lattice decomposes into whole lattices and/or chains by a path q. 
Path q is a sequence of vertices and diagonal edges which decompose the complex 
reduced graph M(G) into subgraphs M(Gi), M(Gj), M(Gk) . . . .  The possible colors 
of the vertices in path q are given in Table 1. 

Table 1. The colors of the vertices in the path q 

Color of the vertex Color of the vertex Color of the vertex 
in M(Gi) in M(Gj) in M(G) = M(Gi) M(Gj) 

black black 
black white black 
white black black 
white white white 

We now describe a novel "pencil-and-paper" method for the 
enumeration and generation of Kekuld structures of  large fused BH's 
consisting of cata- and thin peri-condensed fragments. This method 
makes use of  the reduced graph model and RandiO's search trees 25. The 
method consists of  six steps that are now described in detail for 3,4- 
pentacenopyrene, a sufficiently complex BH to illustrate the method. 

Step 1 

Represent the given BH by a benzenoid graph 18 G and reduced graph 
M(G) (Scheme 2): 

Scheme 2 

G M(GI 
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Step 2 

Decompose M(G) (Scheme 3): 

Scheme 3 

0 ~ 0 0 

M (G) 

M(G1) 

M(G z) 

Step 3 

Count the number of levels l in each reduced graph. (Horizontal edges 
of the reduced graph form levels.) 3 Thus: 

M(G1) : l = 3 
M(G2) : l = 1 

Step 4 

Construct the modified reduced graph MM(G). A modified reduced 
graph is obtained by deletion of all horizontal edges from a reduced graph 
which is in the form of a whole lattice (Scheme 4): 

Scheme 4 

1 5 

3 7 

M(G 1 ) MM(G1) 
1=3 

We do not need to build a modified reduced graph for the chain M(G2), its 
coloring is trivial. 
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Step 5 

Make use of  search trees. 
Here we will describe the procedure for whole lattices when the number 

of vertices at the first level is equal to two, i.e. v = 2. Cases with 
v > 2 will be discussed later. 

For  MM(GI)  we write, 

KI = Z'P~3 + Z 'Ply + ~'P53 + 2'P57 
= number of colorings in M(G1) 

where Pi is the number of  self-avoiding paths 27 between vertices i and j, 
whilst ~ '  means that the summation is taken only over the paths of length 
l - 1 .  

The computation of  the pi/s by hand (adopting the pencil-and-paper 
method) may be error-prone especially for graphs with large values of l. A 
systematic way of  enumerating these paths is via search trees associated 
with the relevant vertices. 

For  MM(G1), search trees for both v 1 and v5 must be constructed. The 
self-avoiding paths of  length I - 1 give the number of  colorings belonging 
to the individual reduced graph. Search trees for M(G1) are depicted in 
Scheme 5 (vertices belonging to the terminal level of M(G 0 are denoted by 
asterisks): 

Scheme 5 

5 6 7* 

1 2 3* 

/ ' . . o - o - _ o  
I 5(f 3~ 2 1 

7~ 6 5 

The required self-avoiding paths of  length 2 are as follows: 

~ ' P u  = (123) + (143) = 2 
Z'P17 = (147) = 1 
~,'P53 = (543) = 1 
Z'P57 = (547) + (567) = 2 

K(pyrene) = K1 = 6 
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Note that paths such as (1234567) are not counted because their lengths 
are greater than l -  1. 

Thus, there are 6 colorings of  M(G1) and these correspond to 6 Kekuld 
structures of pyrene (Scheme 6): 

Scheme 6 

I 5 I 5 i 5 

3 & 3 4 3 7 

(147) 
(123) (143) 

C 

A B 

I 5 I 5 I 5 

3 7 3 7 3 7 

(547) (567) 
(543) 

D E F 

Reduced graphs in the form of chains can be colored very simply. If  
M(G) is a chain with v vertices then it can be colored differently v times. 
The terminal vertices are colored black v - 1 time and white once. Since 
M(G2) is a chain with 6 vertices, there will be six different colorings, 
corresponding to 6 Kekuld structures of pentacene (Scheme 7): 

Scheme 7 

-_ : o : -_ J 
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Step 6 

Construct the counting matrix and hence enumerate K(G). 
In order to obtain the number of Kekuld structures for G, it is necessary- 

to combine M(G1) and M(G2). This can be done in a somewhat tedious 
way by drawing each colored structure M(G1) + M(Gz) as described in 
Ref. 1. A more elegant method makes use of  the counting matrix. In 
constructing the counting matrix it is necessary to obey the rules given in 
Table 1. The number of  Kekuld structures is then given by: 

K(G) = N x M - the number of  zero entries to the matrix 

where N x M is the size of  the counting matrix. In our example the 
counting matrix is of size 6 x 6 (Scheme 8): 

A v 

B v J  

C 

D 

E 

F 0 

Scheme 8 

I J 

0 o 0 

V 

v 

v 

0 v 

Positions in the above matrix with zero entries denote combinations of  
M(Gt)  and M(G2) which are not possible according to the combination 
rules given in Table 1. In our example, there are 5 such combinations, 
hence: 

K(G) = 6 x 6 - 5 = 31 

Thus, 3,4-pentacenopyrene has 31 Kekulk structures. Each individual 
structure may be constructed by considering the superposition of  M(G1) 
and M(G2). For  example, let us consider the reduced graph consisting of  a 
whole lattices D and a chain K (Scheme 9): 

Scheme 9 

G 
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As a further example we consider 1,2-hexaceno-6,7-benzoperylene. 
This molecule will be treated in the same way as 3,4-pentacenopyrene. The 
only difference will appear in Step 5 of the procedure. 

Step 1 (Scheme 10) 

Scheme 10 

o 

M(G) 

Step 2 Scheme 11) 

1 

Scheme 11 

1 
0 o 0 o 

M(G) 

M(GI ) M{G 2) 
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Step 3 

M(G1) : / = 3 
M(G2) : / = 1 

Step 4 (Scheme 12) 

Scheme 12 

i 5 8 

3 7 9 

IM (GI] Iql~(GI) 

Step 5 

(a) M(G1) 
When v > 2 vertices appear at the first level of M(G/), v - 1 parallel 

colorings of whole lattice, corresponding to a given Kekul~ structure of Gi, 
must be carried out. This means that, for each self-avoiding pathp0., v - 1 
parallel self-avoiding paths (paths that do not cross each other) of length 
l - 1  must be found. Note, all parallel paths must end at the starred 
vertices, i.e. vertices belonging to the last level of  M(Gi) (Scheme 13, 
Scheme 14): 

Scheme 13 

7~ 

3~ 4 ~ ' ~  ~ 

~ ..o9~ 
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Pij 
(123) 
(143) 
(147) 

parallel self-avoiding paths 

(547) (567) (569) (867) 
(567) (569) (867) (869) 
(569) (869) 

(869) 

Scheme 14 

I 2 3*  

/~ 9 ~  . 

5 2 I 

p~ parallel paths 

(543) (867) (869) 
(547) (869) 

There are no other paths possible; all possible combinations have 
either been used, or they produce paths that are of length greater than 2. 
Thus, it is necessary to generate only v - 1 search trees. The v-th search 
tree is redundant. In order to illustrate this point we give in Scheme 15 the 
wth search tree for our example. It can easily be seen that all legitimate 
possibilities have been exhausted (see Scheme 15). 

Scheme 15 

I 2 3~ 

7* 4 ~  
3* 2 i 
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In Scheme 16 we give 14 differently colored whole lattices which 
correspond to 14 Kekulk structures of G1. 

Scheme 16 

(123) (123) (123) 
(547) (567) (569) 

A B C 

(12 3) (123) (143) 
(967) (869) (56?) 

D E F 

(143) (143) (143) 
(569) (86"/) (869) 

G H I 

(147) (147) (543) 
(569) (869) (867) 

J K L 

(543) (547) 

(869) (869) 

H N 
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(b) M(G2) 

Step 6 (Scheme 18) 

S. El-Basil et al.: 

Scheme 17) 
Scheme 17 

-_ "2- -_ C = "_ ~ O 

"- C • • C "- " R 

• -2 c -_ "- S 

= ~- o • = : • T 

0 : "- C C ~ : V 

Scheme 18 

A v v ~ v ~ ~ 

C v v v v v v v 

O 0 0 0 0 0 0 

E 0 0 0 0 0 0 

H 0 0 0 0 0 0 ~ i  

I 0 0 0 0 0 0 v l  

J . , . I  ~ , . t  , , I "  , . t" , . 1  

K 0 0 0 0 0 0 , I "  

L 0 0 0 0 0 0 

M 0 0 0 0 0 0 ~ i  

N 0 0 0 0 0 0 v 
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K(G) = 14 x 7 - 48 - -  50 

Thus, 1,2-hexaceno-6,7-benzoperylene has 50 Kekuld  structures. 
Individual Kekuld structures may be plotted without difficulty by 
considering the non-vanishing superpositions of  M(G1) and M(G2). 
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